
Mechanics of Solids

Axisymmetric Relations in Linear Isotropic Elasticity
and applications 

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Class notes given during the course
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STRUCTURAL COMPONENTS OF INTEREST

• Cylinders with internal and/or external pressures
• Rotating disks (annular or solid)
• ……….

Due to the rotational and axial symmetry  the equations of elasticity are 
significantly simplified.
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Navier Equations
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With cylindrical symmetry the only 
Non-trivial Navier Equation is
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Cylinder with internal and/or external pressures

0   zzσ⇒ =

0  u⇒ =θ

For a free ended cylinder under internal and external pressures we have
a state of plane stress, independent of the axial coordinate z:

Due to the rotational symmetry, there is no tangential displacement:   

0  r rzσ σ⇒ = =θ

Parameters of the problem: 

Stresses:

Strains:

Displacement: 

,    rrσ σθθ
,    rr θθε ε

ru

THE STATE OF LOADING IS: PLANE STRESS
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With only  one non-zero displacement component
the strains are :

;    r r
rr

du u
dr r

= =θθε ε

Cylinder with internal and/or external pressure
,    rr rrσ σWith two stress components, 

the equilibrium equations become 

Assuming zero body forces, 
the only remaining equation is: 0rrrr σ σdσ

dr r
−

+ =θθ
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STRESS-STRAIN RELATIONS (PLANE STRESS)
(we need only replace                                    
in the corresponding relations on Cartesian 
Coordinates)
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Cylinder with internal and/or external pressure



Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates

2

2

1

1

r r
rr

r r

du uEσ v
v dr r

u duEσ v
v r dr

  

θθ

 = + −  
 = + −  

( )

( )

2

2

1

1

rr rr θθ

θθ rr

Eσ ε vε
v

Eσ ε vε
v

   

θθ

= +
−

= +
−

;    r r
rr

du u
dr r

= =θθε ε

0rrrr σ σdσ
dr r

−
+ =θθ2

2 2

1 0r r rd u du u
dr r dr r

+ − =

Cylinder with internal and/or external pressure 
and free ends (plane stress state)
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Boundary 
Conditions

Cylinder with internal and/or external pressure
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dr r dr

  =  



APPROXIMATION FOR THIN-WALLED CONTAINER

Example: Hollow Cylinder with Internal and External Pressures

Mechanics of Solids: Theory of Elasticity, Hollow Sphere under pressure

If the wall thickness is les than 10% of the 
inner radius, the cylinder is classified as a 
thin-walled.

The variation of stress with radius is disregarded 
and the following approximation can be 
adopted:
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Cylinder with internal and/or external pressure

In plane stress we have a constant axial strain equal to,

with free ends we can write, 

The first term is due to Poisson effect and the second 
one due to the axial strain.

The total normal force at one of the cylinder’s end is 
zero,

( )zz θθ rr
vε σ σ
E

= − +

( )zz θθ rr zzv σ σ Eε cσ = + + =

Note that:

1. The stress components are the same
as in the  case of a cylinder subjected to
internal and external pressures and fixed ends. 

2.   In such a case an axial stress is also present.
(compare with the problem solved using 
potentials).

3.   The radial displacement is different.
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Cylinder with internal and/or external pressure
(THICK-WALLED CYLINDER)

Boundary Conditions

The preceding solution of the problem was carried
out using the Navier equation in terms of a single
displacement component due to the axial and rotational
Symmetries. 

We can solve the same problem using the following 
Airy function, which is a general solution of 

An analysis of this equation, indicates that 
The non-zero stress components are  

4 0∇ Φ =

0.C D= =

REMARK. We can use the same stress function for
for both cases: cylinder with or without fixed ends. 
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Cylinder with internal and/or external pressure

SPECIAL CASES:

1: Internal Pressure only

The equations we obtained earlier reduce to:
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Cylinder with internal and/or external pressure

SPECIAL CASES:

2: External pressure only

The equations we obtained earlier reduce to:

2 2

2 2 21e e i
rr

e i

r P r
r r r

 
= − − −  

σ

2 2

2 2 21e e i

e i

r P r
r r rθθσ

 
= − + −  

( ) ( ) ( )
2 2

22 2
1 1e e i

r
e i

r P r ru v v
rE r r

 
= − − + + −  

2x

1x
/ ir r

/rr eσ P

/θθ eσ P

,max/r ru u

eP

1 2 3 4

1.0

2.0

0   

2.0−

1.0−

/ 4e ir r =



Mechanics of Solids: Axisymmetrically loaded members
Cylinder with internal and/or external pressure

Application : Compound Cylinder

The internal radius of the outer cylinder (1) is smaller 
than the outer radius of the internal cylinder (2) by δ.
The outer cylinder is heated and fit on to the inner one.
After thermal equilibrium, pressure is developed around 
the contact surface.  What is the developed pressure?
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,2 ,1e ir r δ= +

+ =

If properly designed, compound cylinders
resist better relatively large pressures and
require less material 

is called shrinking 
allowance
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,2 ,1e ir r δ= +
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,1 ,2 ,1 ,2; ;          i e e ir r b r c r a≈ = = =
For simplicity define: 
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Compatibility: 
The increase in the inner radius of cylinder (1),
added to the decrease of the outer radius 
of cylinder (2), is equal to δ
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Rotating Disks of constant thickness
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We have here a cylindrical symmetry and all 
stresses are thickness independent.
The equilibrium equation is what we saw earlier with 
one more term, i.e., the centrifugal force:

Introduce in it the stresses in terms of displacements,
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(mass density ρ)

angular speed in rad/sec.:ω
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Rotating Disks of constant thickness

from stress-displacement
relations,
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From the calculated displacement,
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Rotating Annular Disks of constant thickness

Stresses due to rotation without pressure
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Rotating Disks of constant thickness

Stresses due to rotation without pressure,
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Rotating Solid Disks of constant thickness

Boundary conditions: 

0
0; 0; 0         

b
i rr rr r r

r σ u
= =

= = =

2
2

1 2
(1 )(3 ) ; 0

8
   er v vc c

E
ρω − +

= =

O
er

ω

r

2
cf rρω=

( )2 2 2 2 2 23 3 1 3;
8 8 3

    rr e e
v v vσ r r σ r r

vθθρω ρω+ + + = − = − + 

( )2 2 2(1 ) (3 ) (1 )
8r e
vu v r v r r

E
ρω−

= + − +

/ er r

,max/r ru u

0   

1.0

0.5

2 28 / (3 )θθ eσ v rρω+

2 28 / (3 )rr eσ v rρω+

1x

2x

0.2 0.4 0.6 0.8 1.0


	Mechanics of Solids
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Axisymmetrically loaded members
	Slide Number 9
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Axisymmetrically loaded members
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
	Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates

